skip to main content


Search for: All records

Creators/Authors contains: "Hogg, Alan G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A time frame for late Iroquoian prehistory is firmly established on the basis of the presence/absence of European trade goods and other archeological indicators. However, independent dating evidence is lacking. We use 86 radiocarbon measurements to test and (re)define existing chronological understanding. Warminster, often associated with Cahiagué visited by S. de Champlain in 1615–1616 CE, yields a compatible radiocarbon-based age. However, a well-known late prehistoric site sequence in southern Ontario, Draper-Spang-Mantle, usually dated ~1450–1550, yields much later radiocarbon-based dates of ~1530–1615. The revised time frame dramatically rewrites 16th-century contact-era history in this region. Key processes of violent conflict, community coalescence, and the introduction of European goods all happened much later and more rapidly than previously assumed. Our results suggest the need to reconsider current understandings of contact-era dynamics across northeastern North America. 
    more » « less
  2. ABSTRACT Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals. 
    more » « less